

Efficient, protection-free Suzuki–Miyaura synthesis of *ortho*-biphenyltetrazoles

Nicolas Cousaert,^a Patrick Toto,^a Nicolas Willand^{a,*} and Benoît Deprez^a

^aLaboratoire de Chimie Générale et de Chimie Organique, UMR 8525, Faculté des Sciences Pharmaceutiques et Biologiques, 3 rue du Professeur Laguesse, F 59006 Lille Cedex, France

Received 14 April 2005; revised 12 July 2005; accepted 19 July 2005

Abstract—We describe an efficient protocol for the Suzuki–Miyaura synthesis of *ortho*-biphenyltetrazoles from non-protected 2-bromophenyltetrazole and arylboronic acids. The optimised conditions were achieved using [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) as catalyst and Na₂CO₃ as base. A panel of structurally diverse arylboronic acids was used to demonstrate the scope of the coupling procedure.

© 2005 Elsevier Ltd. All rights reserved.

The palladium-catalysed Suzuki–Miyaura cross-coupling reaction of aryl halides with arylboronic acids and esters has become a common and convenient synthetic method for the production of biaryl compounds.¹ This method has been introduced with success for the preparation of *ortho*-biphenyltetrazoles² and applied for the industrial-scale synthesis of a non-peptide angiotensin II receptor antagonist.³

In addition to their pivotal pharmacophoric role in the binding to the angiotensin II receptors, biphenyltetrazoles provide unique pharmacokinetics properties.⁴ Biphenyltetrazoles have thus been introduced in the design of non-peptidic ligands for GHS receptor.⁵

More recently, this privileged structure has been used for the design of biphenyltetrazole derivatives showing competitive inhibition potency for the Carbapenem- and Cephamycin-resistant dinuclear zinc metallo-β-lactamase from *Bacteroides fragilis*.⁶

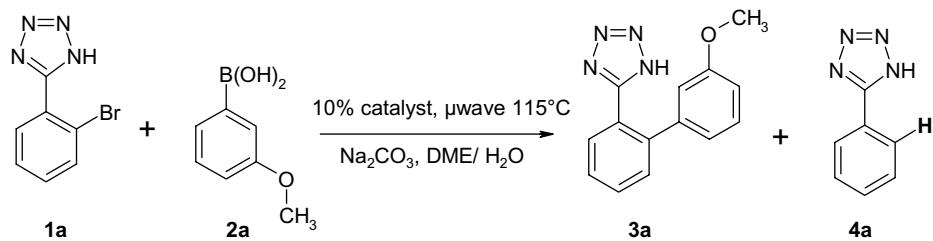
Xu et al. have also published potent 3-biphenyltetrazole containing inhibitors of DPP-IV, a novel therapeutic approach to the treatment of type 2 diabetes.⁷

Keywords: *ortho*-Biphenyltetrazole; Suzuki–Miyaura cross-coupling; Microwave synthesis.

* Corresponding author. Tel.: +33 3209 64261; fax: +33 3209 64709; e-mail: nwilland@pharma.univ-lille2.fr

URL: <http://www.magicbullet.org>.

All reported syntheses to date make use of a two steps protection–deprotection sequence. The classical protecting group employed for tetrazole is the trityl group.⁸ In this paper, we describe an optimised Suzuki–Miyaura cross-coupling of non-protected and commercial 2-bromophenyltetrazole with arylboronic acids.


The first part of the study aims at the optimisation of reaction conditions for the Suzuki–Miyaura microwave synthesis using the coupling reaction of 2-bromophenyltetrazole (**1a**) and 3-methoxyphenylboronic acid (**2a**) as a model.

Three parameters have been investigated: (1) nature of the palladium catalyst, (2) palladium catalyst concentration and (3) nature of the base.

Firstly, based on known conditions, we examined different catalysts (Pd(PPh₃)₂Cl₂,^{9a} Pd(PPh₃)₄,^{9b} Pd(OAc)₂,^{9c} Pd/C,^{9d} PdCl₂(dppf)^{9e}) using Na₂CO₃ as base and a mixture of DME/H₂O as solvent, at 115 °C. Microwave irradiation conditions were used to speed up the synthesis. The results are presented in Table 1.

The highest conversion to **3a** (83%) was observed in the presence of 10% PdCl₂(dppf) as catalyst together with the lowest occurrence of the debrominated side product **4a** (16%) (entry 5).

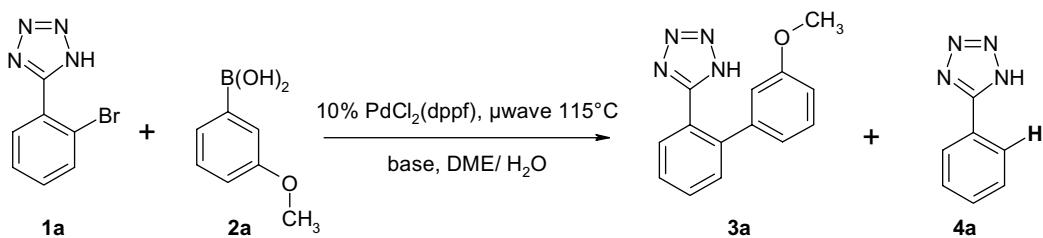

Next, we examined the effect of base in the cross-coupling of 2-bromophenyltetrazole (**1a**) and 3-meth-

Table 1. Effects of palladium catalyst nature on the Suzuki–Miyaura cross-coupling of **1a** and **2a**^a

Entry	Catalyst	3a formation (%) ^b	4a formation (%) ^b	Conversion (%) ^b
1	Pd(PPh ₃) ₂ Cl ₂	53	40	93
2	Pd(PPh ₃) ₄	53	25	78
3	Pd(OAc) ₂	17	39	56
4	Pd/C	31	31	62
5	PdCl ₂ (dppf)	83	16	99

^a All couplings were carried out with 0.3 mmol of 2-bromophenyltetrazole, 0.6 mmol of 3-methoxyphenylboronic acid, 0.45 mmol of Na₂CO₃ and 0.03 mmol of Pd catalyst in a mixture of 1.5 mL of DME and 0.6 mL of H₂O under Argon at 115 °C in microwave for 30 min.

^b Formation is controlled with HPLC at 215 nm.

Table 2. Effect of base on the Suzuki–Miyaura cross-coupling of **1a** and **2a** with 10% PdCl₂(dppf)^a

Entry	Base	3a formation (%) ^b	4a formation (%) ^b	Conversion (%) ^b
1	Na ₂ CO ₃	83	16	99
2	CsF	4	48	52
3	NaOH	8	45	53
4	NaHCO ₃	38	34	72

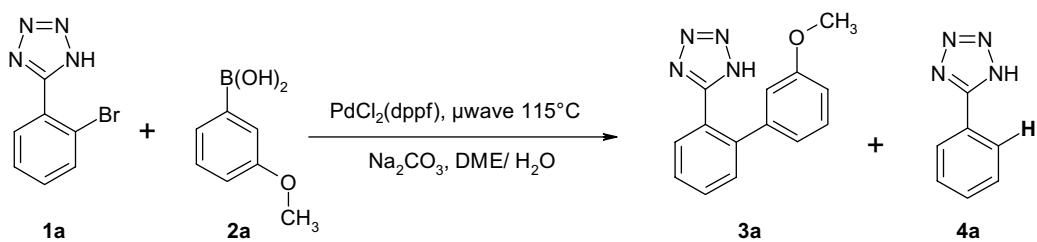
^a All couplings were carried out with 0.3 mmol of 2-bromophenyltetrazole, 0.6 mmol of 3-methoxyphenylboronic acid, 0.45 mmol of base and 0.03 mmol of PdCl₂(dppf) in a mixture of 1.5 mL of DME and 0.6 mL of H₂O under Argon at 115 °C in microwave for 30 min.

^b Formation is controlled with HPLC at 215 nm.

oxyphenylboronic acid (**2a**) in the presence of 10% PdCl₂(dppf). The results are shown in **Table 2**.

The results show a dramatic effect of the nature of the base by the conversion to the desired biphenyltetrazole **3a** and on the formation of the undesired debrominated phenyltetrazole **4a**. The formation of this side product is increased when using non-carbonate bases such as CsF or NaOH. The best results were obtained using Na₂CO₃.

Finally, we investigated the minimum quantity of catalyst required to achieve a fast and complete conversion. We compared four conditions with decreasing amount of PdCl₂(dppf) using Na₂CO₃ as base. The results are shown in **Table 3**. The best results were obtained in the presence of a 10% catalyst concentration.


The formation of **4a** could be explained by a failure in the transmetalation step of the catalytic cycle. This bimolecular step could be compromised by a low con-

centration or reactivity of one of the two implied partners: (a) Ar–Pd(II)L₂–X and (b) Ar–B(OH)₃. Without transmetalation the Ar–Pd(II)L₂–X complex evolves to give Ar–H (**4a**).

Moreover the reaction was carried out with a classic heating mode (oil bath) as shown in **Table 4**. The formation of **3a** in such conditions is much slower than with the microwave one and the presence of by-product **4a** is also less significant.

To evaluate the scope and limitations of this procedure we examined the reaction of a variety of arylboronic acids using the following optimised conditions: 10% PdCl₂(dppf) catalyst, Na₂CO₃ as base in DME/H₂O, 30 min at 115 °C under microwaves. The results are presented in **Table 5**.

4-Pyridineboronic acid did not react quantitatively. By contrary, arylboronic acids with electron-withdrawing

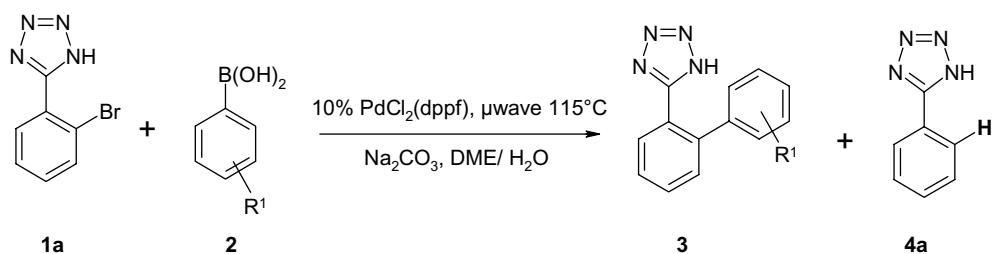
Table 3. Effects of $\text{PdCl}_2(\text{dppf})$ concentrations on the Suzuki–Miyaura cross-coupling of **1a** and **2a**^a

Entry	$\text{PdCl}_2(\text{dppf})$ (equiv)	3a formation (%) ^b	4a formation (%) ^b	Conversion (%) ^b
1	0.1	83	16	99
2	0.033	55	31	86
3	0.01	30	33	63
4	0.0025	20	35	55

^a All couplings were carried out with 0.3 mmol of 2-bromophenyltetrazole, 0.6 mmol of 3-methoxyphenylboronic acid, 0.45 mmol of Na_2CO_3 and x equiv of $\text{PdCl}_2(\text{dppf})$ in a mixture of 1.5 mL of DME and 0.6 mL of H_2O under Argon at 115 °C in microwave for 30 min.

^b Formation is controlled with HPLC at 215 nm.

Table 4. Effects of the microwave on the kinetic of the Suzuki–Miyaura cross-coupling of **1a** and **2a**^a


Heating mode	Reaction time	3a formation (%) ^b	4a formation (%) ^b	Conversion (%) ^b
Oil bath ^c	96 h	47	0.6	48
Microwave ^d	0.5 h	83	16	99

^a All couplings were carried out with 0.3 mmol of 2-bromophenyltetrazole, 0.6 mmol of 3-methoxyphenylboronic acid, 0.45 mmol of Na_2CO_3 and 0.03 mmol of Pd catalyst in a mixture of 1.5 mL of DME and 0.6 mL of H_2O under Argon.

^b Formation is controlled with HPLC at 215 nm.

^c Temperature: 90 °C.

^d Temperature 115 °C, pressure between 8 and 12 bar.

Table 5. $\text{PdCl}_2(\text{dppf})$ catalysed Suzuki–Miyaura cross-coupling of 2-bromophenyltetrazole **1a** and arylboronic acids^a

Entry	Product	R^1	3 formation (%) ^b	4a formation (%) ^b	Yield (%)
1	3a	3-OCH ₃	83	16	58
2	3b	4-CH ₂ OH	82	17	55
3	3c	4-CF ₃	73 (23 ^c)	4	55
4	3d	4-C(CH ₃) ₃	73	5	57
5	3e	4-CHO	88	7	55
6	3f	3-F	91	6	58
7	3g	3-NH ₂	93	5	60
8	3h	4-pyridine	40	10	30

^a All couplings were carried out with 0.3 mmol of 2-bromophenyltetrazole, 0.6 mmol of 3-methoxyphenylboronic acid, 0.45 mmol of Na_2CO_3 and 0.03 mmol of $\text{PdCl}_2(\text{dppf})$ in a mixture of 1.5 mL of DME and 0.6 mL of H_2O under Argon at 115 °C in microwave for 30 min.

^b Formation is controlled with HPLC at 215 nm.

^c Formation of hydrolysed by-product.

substituents such as CF_3 , CHO , F or electron-donating substituents such as NH_2 , OCH_3 coupled readily with

non-protected 2-bromophenyltetrazole with excellent yields (73–93%). Compound **3b**, with a free alcohol

group, was obtained with high yield, indicating that this group does not require a specific protection under the coupling conditions.¹⁰

In summary, this study shows that non-protected 2-bromophenyltetrazole can be efficiently coupled with a wide variety of arylboronic acids under $PdCl_2(dppf)$ catalysed Suzuki–Miyaura cross-coupling procedure. This procedure is efficient, rapid and the compounds are recovered after a simple liquid/liquid extraction. This methodology is an efficient tool for the introduction of the 5-biphenyl-2-yl-1*H*-tetrazole core and the synthesis of biphenyltetrazoles, which are gaining increasing interest in medicinal chemistry.

Acknowledgements

The authors would like to thank Professors Jean-Claude Gesquière and André Tartar for helpful discussions, Gerard Montagne and Nathalie Azaroual from Lille 2 Biophysics laboratories for NMR experiments.

References and notes

1. Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457–2483.
2. (a) Kerdesky, F. A. J. et al. *Synth. Commun.* **1996**, *26*, 1007–1014; (b) Yoo, S. et al. *Tetrahedron Lett.* **1997**, *38*, 1203–1206.
3. Larsen, R. D. et al. *J. Org. Chem.* **1994**, *59*, 6391.
4. Johnston, Colin I. *The Lancet* **1995**, *346*, 1403–1407.
5. Lin, Petre et al. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3237–3242.
6. Toney, J. H. et al. *Chem. Biol.* **1998**, *185*.
7. Xu, J. et al. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2533–2536.
8. (a) Kerdesky, F. A. J.; Sowin, T. J. *Synth. Commun.* **1996**, *26*, 1007–1013; (b) Smith, G. B. et al. *J. Org. Chem.* **1994**, *59*, 8151–8156.
9. (a) Krämer, C. S. et al. *Tetrahedron Lett.* **2001**, *42*, 8619–8624; (b) Alo, B. I. et al. *J. Org. Chem.* **2001**, *56*, 3763–3768; (c) Wallow, T. I. et al. *J. Org. Chem.* **1994**, *59*, 5034–5037; (d) Marck, G. et al. *Tetrahedron Lett.* **1994**, *35*, 3277–3280; (e) Morris, Gregory A.; Nguyen, SonBinh T. *Tetrahedron Lett.* **2001**, *42*, 2093–2096.
10. Suzuki–Miyaura cross-coupling reaction: General procedure A glass tube was loaded with 2-bromophenyltetrazole (68 mg, 0.3 mmol), the appropriate arylboronic acid (0.6 mmol), Na_2CO_3 (48 mg, 0.45 mmol), $PdCl_2(dppf)$ (24.5 mg, 0.03 mmol), DME (1.5 mL) and H_2O (0.6 mL). After one vacuum/Argon cycle to remove oxygen, the reaction tube was sealed; the mixture was stirred and heated at 115 °C in microwave oven for 30 min. The mixture was diluted with $NaHCO_3$ (5%) and ethyl acetate (10 mL). The organic layer was extracted with $NaHCO_3$ (5%) (4 × 20 mL) and aqueous layers were combined, washed with ethyl acetate (5 mL), acidified (pH = 1) and extracted with ethyl acetate (5 × 30 mL). The combined organic layers were dried ($MgSO_4$). The solvent was removed in vacuo.
- 5-(3'-*Methoxy*-biphenyl-2-yl)-1*H*-tetrazole (**3a**): Yield: 58%, pale yellow oil, 1H NMR (300 MHz, DMSO- d_6): δ = 7.60 (m, 3H, Harom); 7.43 (d, 1H, J_{HH} = 7.5 Hz, Harom); 7.30 (t, 1H, J_{HH} = 7.5 Hz, Harom); 7.18 (d, 1H, J_{HH} = 6.3 Hz, Harom); 6.99 (t, 1H, J_{HH} = 7.2 Hz, Harom); 6.86 (d, 1H, J_{HH} = 8.4 Hz, Harom); 3.30 (s,

3H, OCH₃); ^{13}C NMR (75 MHz, DMSO- d_6): δ = 132.1 (CHarom); 131.4 (1CHarom); 131.3 (1CHarom); 130.1 (1CHarom); 128.2 (1CHarom); 121.2 (1CHarom); 111.5 (1CHarom); 55.31 (O–CH₃), LCMS (EI): *m/z* = 253 (base peak).

*2'-(1*H*-Tetrazol-5-yl)-biphenyl-4-yl]-methanol* (**3b**): Yield: 55%, colourless oil, 1H NMR (300 MHz, DMSO- d_6): δ = 7.69 (m, 2H, Harom); 7.58 (m, 2H, Harom); 7.20 (t, 1H, J_{CH} = 7.8 Hz, Harom); 6.87 (dd, 1H, J_{CH} = 8.1 Hz, J_{HH} = 1.8 Hz, Harom); 6.63 (m, 2H, Harom); 3.67 (s, 2H, CH₂OH), ^{13}C NMR (75 MHz, DMSO- d_6): δ = 131.7 (1CHarom); 131.2 (1CHarom); 130.0 (1CHarom); 127.6 (1CHarom); 121.7 (1CHarom); 115.0 (1CHarom); 113.7 (1CHarom); 55.6 (1CH₂OH), LCMS (EI): *m/z* = 253 (base peak), 235.

*5-(4'-Trifluoromethyl-biphenyl-2-yl)-1*H*-tetrazole* (**3c**): Yield: 55%, pale yellow oil, 1H NMR (300 MHz, DMSO- d_6): δ = 7.67 (m, 6H, Harom); 7.33 (d, 2H, J_{CH} = 7.8 Hz, Harom); ^{13}C NMR (75 MHz, DMSO- d_6): δ = 131.7 (1CHarom); 131.4 (1CHarom); 130.4 (2CHarom); 129.2 (1CHarom); 125.6 (2CHarom); 113.5 (1CHarom); LCMS (EI): *m/z* = 291 (base peak).

*5-(4'-tert-Butyl-biphenyl-2-yl)-1*H*-tetrazole* (**3d**): Yield: 57%, yellow oil, 1H NMR (300 MHz, DMSO- d_6): δ = 7.62 (m, 4H, Harom); 7.33 (d, 2H, J_{HH} = 8.4 Hz, Harom); 7.02 (d, 2H, J_{HH} = 8.4 Hz, Harom); 1.26 (s, 9H, C(CH₃)₃), ^{13}C NMR (75 MHz, DMSO- d_6): δ = 131.7 (1CHarom); 131.3 (2CHarom); 129.1 (2CHarom); 128.1 (1CHarom); 125.7 (2CHarom); 31.6 (C(CH₃)₃), LCMS (EI): *m/z* = 279 (base peak).

*2'-(1*H*-Tetrazol-5-yl)-biphenyl-4-carbaldehyde* (**3e**): Yield: 55%, pale yellow solid mp: 162–164 °C, 1H NMR (300 MHz, DMSO- d_6): δ = 10.05 (s, 1H, CHO); 7.85 (d, 2H, J_{CH} = 7.5 Hz, Harom); 7.62 (m, 4H, Harom); 7.33 (m, 2H, J_{CH} = 7.5 Hz, Harom), ^{13}C NMR (75 MHz, DMSO- d_6): δ = 193.4 (1CHO); 135.4 (1CHarom); 131.8 (1CHarom); 131.3 (1CHarom); 130.3 (1CHarom); 130.0 (1CHarom); 129.25 (1CHarom); 128.9 (1CHarom); 127.6 (1CHarom), LCMS (EI): *m/z* = 251 (base peak).

*5-(3'-Fluoro-biphenyl-2-yl)-1*H*-tetrazole* (**3f**): Yield: 58%, pale yellow solid; mp 128–129 °C, 1H NMR (300 MHz, DMSO- d_6): δ = 7.7 (m, 2H, Harom); 7.58 (m, 2H, Harom); 7.34 (q, 1H, J_{CH} = 6.3 Hz, Harom); 7.15 (td, 1H, J_{CH} = 8.7 Hz, J_{HH} = 2.4 Hz, Harom); 6.99 (dt, 1H, J_{CH} = 10.2 Hz, J_{HH} = 2.4 Hz, Harom); 6.86 (d, 1H, J_{CH} = 7.5 Hz, Harom), ^{13}C NMR (75 MHz, DMSO- d_6): δ = 131.8 (1CHarom); 131.3 (1CHarom); 131.2 (1CHarom); 130.8 (d, 1Charom-F); 128.9 (1CHarom); 125.6 (1Charom-F); 116.3 (d, 1Charom-F); 115.0 (d, 1Charom-F), LCMS (EI): *m/z* = 241 (base peak).

*2'-(1*H*-Tetrazol-5-yl)-biphenyl-3-ylamine* (**3g**): Yield: 60%, white solid recovered as hydrochloride salt; mp \geq 300 °C; 1H NMR (300 MHz, DMSO- d_6): δ = 8.22 (sb, 2H, NH₂); 7.80 (t, 1H, J_{HH} = 4.2 Hz, Harom); 7.70 (m, 2H, Harom); 7.60 (t, 1H, J_{HH} = 6.3 Hz, Harom); 7.50 (d, 1H, J_{HH} = 7.5 Hz, Harom); 7.43 (d, 2H, J_{HH} = 4.8 Hz, Harom); 7.30 (t, 1H, J_{HH} = 7.8 Hz, Harom); ^{13}C NMR (75 MHz, DMSO- d_6): δ = 131.9 (1CHarom); 131.7 (1Cq); 131.3 (1CHarom); 131.2 (1CHarom); 129.3 (1CHarom); 129.0 (1CHarom); 128.8 (1CHarom); 125.3 (1CHarom); LCMS (EI): *m/z* = 238 (base peak).

*4-(2-1*H*-Tetrazol-5-yl)-phenyl-pyridine* (**3h**): Yield: 30%, white solid recovered as hydrochloride salt; mp \geq 300 °C, 1H NMR (300 MHz, DMSO- d_6): δ = 8.84 (m, 2H, Harom); 8.32 (m, 2H, Harom), 7.84 (m, 4H, Harom); ^{13}C NMR (75 MHz, DMSO- d_6): δ = 142.3 (1CHarom); 140.6 (1CHarom); 132.1 (1CHarom); 131.6 (1CHarom); 131.3 (1CHarom); 131.2 (1CHarom); 127.9 (1CHarom); 125.3 (1CHarom); LCMS (EI): *m/z* = 224 (base peak).